
,AAII4 620 CALIFORNIA UNIV LOS ANGELES SCHOOL OF ENGINEERING A ETC F/6 12/1
EXPERIENTAL DETERMINATION OF STRESSES IN DAMAGED COMPOSITES US--ETC(U)
MAY 82 S B BATDORF N00014-I-C-0GI5

INCLASSIFIED LCLA-EN-82-36NLmiim...mmnm



11111.5

1 4 IIIII-,III

1111112 

.

1111IL2 1111 .

MICROCOPY RESOLUTION TEST CHART



EXPERIMENTAL DETERMINATION OF STRESSES IN DAMAGED COMPOSITES

USING AN ELECTRIC ANALOGUE

S. B. BATDORF

-Sponsored by the
Department of the Navy
Office of Naval Research

under Contract No. N00014-76-C-0445

UCLA-ENG-82- 36

MAY 1982

DTIC
> ELECTE

0- MAYS;
Li-i Reproduction in whole or in part Is permitted for

any purpose of the United States Government

UCLA
School of Engineering and Applied Science

'I1 d,,r,, n ijam ,,,, 82 0 5 17 152
I- diewbIdm is



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
SCLA-ENG 82-36 10 --4.~

LE 82-36 I S. TYPE OF REPORT 6 PERIOD COVERED
4. TITLE (and Subtitle)

Experimental Determination of Stresses in Technical 1981-1982
Damaged Composites Using an Electric Analogue

6. PERFORMFG G.3 REPORT NUMBERUICLA-ENG -

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(a)

S. B. Batdorf N00014-76-C-0445

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

AREA & WORK UNIT NUMBERS

School of Engineering and Applied Science
University of California
Los Angeles, California 90024

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

May 1982
Department of the Navy, Office of Naval Research I3. NUMBER OF PAGES

18

4. MONITORING AGENCY" NAME ADDRESS(if different from Controllitn Office) Is. SECURITY CLASS. (of thie report)

Office of Naval Research - Branch Office Unclassified
1030 East Green Street _

Pasadena, California 91101 1Sa. SECL ASSI FICATION/DOWNGRADING

f6. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse ide it necessary and identify by block number)

Composite Strength Damaged Composites
* Composite Stiffness Uniaxial Composites

Stresses in Composites
Electric Analogue

ft 1ABSTRACT (Continue on reverse aide It neceesary and Identify by block number)

4nadequate knowledge of the local stress distributions in damaged composites
has been a major obstacle to progress in the understanding of damage accumu-
lation and ultimate failure of such materials. Theoretical treatments of
3-dimensional uniaxially reinforced composites are difficult, and direct
experimental observations of stresses around interior flaws are not feasible.

(-n experimental determination of stress distributions can be made using an
electric analogue. A scaled model of the composite including the damage --- -

DD I JO 1473
SECURITY CLASSIFICATION OF THIS PAGE (Wh,en Dat Entered)



StCURITY CLASSIFICATION OF THIS PAGI(Wmen Daile mnder) k

Continuation of Abstract

Is made with the fibers replaced by conducting rods and the matrix
replaced by an electrolyte. The resistivity ratio of rods to electrolyte
is taken equal to the elastic modulus ratio of matrix to fiber. A tensile
force applied in the fiber direction is modelled by applying a potential
gradient in the rod direction. The displacement distribution in the
composite Is then modelled by the potential distribution in the analogue
to an accuracy somewhat better than that given by shear lag theory.
Thus stress distributions can be found by measuring potentials in the
analogue with the aid of an electric probe.

I

SgUYCAISAINO ig A~lh o.be.



AccW!s1on For
NTIS GRA&I

DTIOF TAB
Unannounced []

Experimental Determination of Stresses in Damaged Ustfiotioe

Composites Using an Electric 
Analogue

By,

S. B. Batdorf Distribution/
Availability Codes

School of Engineering and Applied Science viai/o
University of California Los Angeles 90024 ist SpecialOC

Introduction

A few decades ago it began to be recognized that certain fibers such

as glass, boron, carbon or graphite, and more recently kevlar could be pre-

pared with several times the specific strength and stiffness obtainable in

conventional structural materials. As a result a very substantial develop-

ment effort was undertaken to capitalize on these properties. In spite of

the extensive use now being made of fibrous composites, there is a wide-

spread feeling that current applications still fall far short of the ulti-

mate potential of such materials. The slow progress in practical application

of composites is no doubt due in part to the fact that the theoretical

foundations relating to the strength and stiffness of these materials have

been very inadequate up to the present time. The stiffness of undamaged

composites is pretty well understood even in the case of complicated laminated

structures. But one of the great virtues of the long fiber composite is the

fact that the tensile failure load greatly exceeds the load at which the

first fiber fails. The stiffness of greatest concern in critical parts

must therefore be stiffness of the damaged composite. Consequently as a

practical matter, the determination of both the stiffness and the ultimate

load on a composite require an understanding of the mechanics of damage

accumulation. The most serious obstacle to progress in this area



is probably inadequate knowledge concerning the stress distribution in a

damaged composite. This becomes evident from the following brief review

of progress in this field.

The theory underlying progressive damage and ultimate failure of a

collection of independent fibers, or a bundle, was worked out several

* decades ago by Daniels and Coleman [1, 2]. They showed that the strength

of a bundle is substantially less than the average strength of the fibers

of which it is composed. When a bundle of strong fibers is bound together

by a relatively weak matrix to form a unidirectionally reinforced composite,

the strength can be substantially improved. When a given fiber breaks, the

load it no longer carries is transmitted to neighboring fibers as a result

of shearing forces in the matrix, and some distance from the break it is

transferred back into the original fiber, thus localizing the damage.

Rosen [3] analyzed such a composite by conceptually dividing the composite

into many slices, or mini-bundles, connected end-to-end. The length of

each mini-bundle was taken to be the ineffective length of a broken fiber,

or the shear transfer length. The load given up by a broken fiber was

assumed to be equally distributed to all remaining fibers in a mini-bundle,

and the theory of Daniels and Coleman was used to find its ultimate strength.

Zweben [4] revised the theory to take into account the fact that the load

given up by a broken fiber is mainly taken up by the immediate neighbors.

In this model of damage accumulation the fiber adjacent to a break is more

apt to fail than a distant fiber and this gives rise to the possibility of

crack growth and eventual instability of the type first studied by Griffith

in the case of homogeneous materials [5]. An effort by Zweben and Rosen [6)
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to carry the analysis to the point of instability for composites was un-

successful due to analytical complexities, and the authors proposed first

occurrence of a double break (the theory for which they succeeded in working

out) as a conservative estimate of composite strength.

Using an entirely different approach, Harlow and Phoenix (7, 8] ob-

tained a virtually exact solution for the strength of a 2-0 composite (a

tape one fiber thick) on the basis of a highly idealized local load sharing

rule. They assumed that the load given up by a series of broken fibers of

any order was completely taken up by the two immediately adjacent neighbors,

i.e., each of the two fibers adjacent to a break of any multiplicity takes

50% of the load. Hedgepeth (9] found that the proper figure is 33% for

a single break and progressively less for higher order breaks. R. L. Smith

[10] generalized the Harlow and Phoenix result and gave an approximate

solution for the 2D problem for arbitrary stress concentration factors in

the fibers adjacent to the crack. Batdorf [11] gave an approximate solu-

tion for a 3D fibrous composite for arbitrary stress concentration factors.

As a result of the difficulties associated with the analytical study

of 3D composites, a number of authors have studied damage accumulation and

ultimate failure using a Monte Carlo approach (10, 12, 13]. The studies

that make use of specific local load sharing rules have usually made arbitrary

assumptions in regard to stress concentration factors which generally tend

to give too large a share of the total load to the immediately adjacent

neighbors.

Calculations of the stiffness of damaged composites are similarly

handicapped by lack of knowledge of stress distribution. Gottesman, Hashin,
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and Brull have shown how to obtain estimates for upper and lower bounds on

composite stiffness using a variational approach [14]. The upper bound

employs the principle of minimum potential energy and makes use of an

admissible displacement field. The lower bound is based on a consider-

ation of minimum complementary energy, and employs an ardmissible stress

field. The discrepancy between upper and lower bounds is approximately

a factor 2 for a = 0.2 where a is a measure of crack density per unit

area.

The reason that available treatments of strength and stiffness of

damaged composites are generally either rather crude approximations or are

left in parametric form employing unknown parameters is the serious lack

of knowledge concerning the stress distributions in damaged composites.

The most widely employed source of information in the field is a paper by

Hedgepeth and Van Dyke [15] in which local stress concentration factors

are found for 3D uniaxially reinforced composites using shear lag theory.

Unfortunately numerical results were only furnished for a very limited

number of crack sizes (1, 2, 4, 9, 12, 16, etc. broken fibers) and for

each crack size only one neighboring fiber was considered. moreover, only

the stress concentration factor was found, not the entire stress distri-

bution. All the missing information could in principle be obtained using

Hedgepeth and Van Dyke's equations but unfortunately they contain an

undefined parameter Gh described only as the effective matrix shear stiff-

ness. G is the matrix shear modulus but h is some unknown function of

the fiber diameter, interfiber spacing and composite geometry (square,

hexagonal, or some other type of array).
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Recently Goree and Gross have applied Hedgepeth's equations to find

detailed stress distributions for the 3D case (16]. In their analysis the

matrix was conceptually divided into cells of square cross-section with

a fiber at the center of each cell. One consequence of their model for

material behavior is that the force transmitted by a fiber to one of its

nearest neighbors is independent of the ratio of fiber diameter to fiber

spacing. The authors recognized the approximate nature of this feature

of their model, and in a later paper [17] they employed an effective shear

stiffness derived from experimental data on boron aluminum. However, the

general dependence of h on fiber volume fraction and geometry for 3D

composites remains unknown at the present time.

An alternative approach for finding detailed stress distributions in

damaged composites is to resort to experiment, but this also entails certain

difficulties. It is obviously impractical to mount strain gauges on indi-

vidual fibers. Optical techniques such as photoelasticity, Moire patterns

and stress coat are largely limited to the study of surface phenomena.

Fortunately an experimental approach based on the use of an electric

analogue can be employed. The analogue is related but somewhat superior

to the shear lag approximation to composite behavior. Like shear lag, it

assumes that all displacements are parallel to the fibers. Unlike shear

lag, in the analogue the matrix carries its proper share of the direct stress.

Higgins' extensive review of electrical analogues to mechanics prob-

lems (18] lists one paper giving an electric analogue technique for solving

shear lag problems [19], and at least one paper has been published since on

the subject (20]. However, the approach in those papers is quite different

from that proposed here. In References 19 and 20 the differential equations
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of shear lag are replaced by difference equations, and a network of resistors

is constructed to solve the resulting set of simultaneous linear algebraic

equations. The continuous system is thus discretized, and the values of the

* various resistances have to be calculated in some way. The network becomes

very complicated for a 3D composite.

The present approach uses a scaled model of the composite (including all

damage) with conducting rods replacing the fibers and an electrolyte replacing

the matrix. It will be shown that by proper scaling and choice of the re-

sistivity ratio of rods to electrolyte the differential equations and boundary

conditions for the potential in the electrical system are the same as those

for the displacements in the mechanical system. Thus by measuring potential

distributions in the electrical system with a probe, the strains and therefore

the stresses can be found for the composite.

Equations Governing Composite Behavior

It will be assumed, as in shear lag theory, that all displacements are

parallel to the reinforcing fibers. If the fibers are aligned parallel to the

z-axis (see Fig. 1), then

uv=O (1)

The other main assumptiQn of shear lag theory, that the matrix carries only

shear, is not made here.

The displacements in the k'th fiber will be denoted by w (xkykz),

where (xkyk) are the coordinates of the center line of the fiber. Applying

Hooke's law to the fiber

a (XkYkZ) - Ef dw(xkYkz) (2)
dz



For the matrix material Hooke's law implies that

Tzx Gm (zx Gm (3a)zx max

Tzy =Gm Yzy Gm aw (3b)
ma

= E' - E - (3c)az

Here Gm is the shear modulus of the matrix material, and E mis the tensile

stiffness of the material when lateral expansion and contraction are for-

bidden. It is related to Young's modulus Em by the relation

Elm = E (1-v) (4)
Em 1-v -2v 2

where v is Poisson's ratio.

Equilibrium in the k'th fiber requires that

Afd (z dx + -r dy) (5)

where the integral is taken around the circumference of the fiber.

Using Hooke's law, the equation becomes

AEfd~wf (Xk'Ykz) w
A fE f d 2 Gm (aWm dx+ mdy) (6)

_za ax



or

d2wf Gm ( (indx + wi dy) (7)

dz2  -f y ax

The boundary conditions are determined by the applied loading. If the

rest length of the composite is L and it is extended to length L + AL, then

W f (xkY k , ! L/2) = ± AL/2 (8)

If the fiber is unbroken the differential equation (7) and the boundary

conditions (8) define its strain and therefore also its stress distribution.

If it is broken at location zko the stress and strain at zko are zero. Thus

each fiber segment obeys (7) and one of the boundary conditions (8). The

other boundary condition becomes

d- = 0 
(9)

Equilibrium of the matrix in the z-direction requires that

zx + + = 0 (10)
ax ay az

Applying Hooke's law this becomes

Gm /awm 2 Wm. , w
S (WM +-fWM + Em .--- 0

2 ay2 M aZ2



or

2Wm + 2W 2WM 0 (11)

where

C2 = E /G (12)

The end boundary conditions are tie same as for the fibers

wm (xy, ± L/2) =±6L/2 (13)

The side boundary conditions are a statement of continuity of w,

Wm = wf at all interfaces. (14)

Electric Analogue

For simplicity, let us initially consider an electric analogue in

which fibers and matrix are replaced by a geometrically similar array of

conducting rods immersed in a weakly conducting electrolyte. Fundamentally,

the analogy exploits the similarity between Hooke's law and Ohm's law.

According to Ohm's law, in the k'th rod the current density j is given

by

Arjz(x kyz) = d (xkYkyz) (15)
"dZ ( r)(1 

)



where ¢ is the electrical potential and pr and Ar are the resistivity and

area of the rod respectively. In the electrolyte, Ohm's law states that

S= V (1/pe) (16)

where Pe is the resistivity of the electrolyte.

Conservation of charge implies that in the rod

Ar ddz =  (ey dx + jex dy) (17)

Here the integral is to be taken around the periphery of the rod, and

3ex and jey are the x and y components of the current density in the

electrolyte. Applying Ohm's law, the equation can be written

(Alp) dP r - (18)e/e

or

d 2or =Pr /a~e L@e

dj AP ay'~ dx + .-x-dy' (19)
r e/

The boundary conditions for the k'th rod are

* (xk,yk , ± L/2)= 0 0o/2 (20)
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where 0is the potential difference between the rod ends. If the rod is

broken at location z kO equation (19) applies to each segment. In this case

one boundary condition of type (20) applies while the other is obtained by

noting that at the break the current is zero, as a result of which (using

(15))

dT (xk'Yk' Zko) =0 (21)

The differential equation for the electrolyte is obtained by noting

the fact that for steady currents

L

v ""Je 0 (22)

Applying Ohm's law (14) we obtain

V2 0e = 0 (23)

The end boundary conditions are

Oe (x, y, ± L/2) = 0 + /2 (24)

while the side boundary conditions are

Oe = Or (25)

at every interface.
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In comparing the differential equations and boundary conditions for rods

and electrolyte with those for fibers and matrix, we see that the only flaw

in the analogy is in the matrix and electrolyte differential equations, (11)

and (23) respectively. This discrepancy can be eliminated by using a scale

factor for the z dimension differing from that common to the x and y

dimensions. Let us introduce the coordinate

s a z (26)

Then (23) becomes

+ 'e + a2  e 0 (27)
x 2  3Y2 S

With the transformation (26), (19) becomes

dS2  -reA dx + N (28)

The end boundary conditions become

¢ (x, y, ± a L/2) 12 (29)

while the side boundary conditions retain their previous form:

Oe 0'r (30)
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at all rod-electrolyte interfaces. Thus the electrical system is a faithful

analogue of the mechanical system provided that the resistivity ratios are

chosen appropriately.

To see how the choice is to be made we note that if the ratio of rod

* diameter to fiber diameter is K, the point (x,y,z) in the composite corresponds

to point (Kx,Ky,aKz) in the electric analogue. Hihat is needed is a choice that

will make

, (Kx,Ky,Kz)= -w (x, y, z) (31)

AL

for all values of x, y, and z. A little reflection will convince the reader

that with this choice the integrals in (7) and 28) are equal.

If we were to equate the factors in front of these integrals we would

find

1 d24_ I d2w (32)
AL dz 3)

2
0

whereas (31) implies that

1 2~ 1 d 2W(3

Accordingly we choose

Pr Gm

13



or

Pr_ (12 Gm Ar E ('

P K2 Ef Af Ef

With this resistivity ratio, the analogue relation (31) holds for any

arbitrary array of fibers aligned parallel to the z-axis, with any arbitrary

distribution of fiber fractures. The strain and therefore the stress distri-

bution in both fiber and matrix can thus be found by constructing a geo-

metrically similar array of conducting rods with scale factor K in the x and

y directions and cK in the z-direction, immersing it in an electrolyte of

appropriate resistivity, applying a potential to the ends, and measuring

the potential distribution with a probe.

Discussion

Up to this point only simple tension has been considered. Pure bending

can be simulated by changing the end boundary conditions. For example,

bending in the x-z plane can be simulated by applying a linearly varying

potential to the rod ends:

¢ (x,y, ± L/2) = ± 1 x/a (35)

where a is the half-width of the composite. Combined tension and bending

is simulated by

* (xy, ± L/2) = ± o± *x/a (36)

Shear can be simulated by taking

0 (± 0.5b, y, z) = ± 2 (37)
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DLebonding without friction between fiber and matrix can be simulated

applying insulating tape over the appropriate portion of conducting rod.

Debonding with friction can be simulated by using tape with the appropriate

resistivity. Cracks In the matrix can be simulated by placing insulating

sheet in the appropriate places In the electrolyte.

A number of techniques can be employed for finding the stiffness of

a damaged composite. Gottesman, Hashin and Brull (14] bound the stiffness

by finding the energy and the complementary energy in tension or in shear,

and also use the self-consistent theory to obtain an approximte answer.

Alternatively a shear lag approach or numerical techniques such as finite

element calculations can be employed. All of these are somewht laborious.

Using the electrical analogue approach the stiffness determination is much

simpler. It was pointed out in the previous section that elastic modulus

and resistivity are inversely related. As a consequence of this, the ratio

of the stiffness of a damaged composite to that of the undamaged composite

is simply the ratio of the overall resistance of the undamaged to that of

the damaged electrical analogue.
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